Metal-dielectric band alignment and its implications for metal gate complementary metal-oxide-semiconductor technology

نویسندگان

  • Yee-Chia Yeo
  • Tsu-Jae King
  • Chenming Hu
چکیده

The dependence of the metal gate work function on the underlying gate dielectric in advanced metal-oxide-semiconductor ~MOS! gate stacks was explored. Metal work functions on high-k dielectrics are observed to differ appreciably from their values on SiO2 or in vacuum. We applied the interface dipole theory to the interface between the gate and the gate dielectric of a MOS transistor and obtained excellent agreement with experimental data. Important parameters such as the slope parameters for gate dielectrics like SiO2, Al2O3, Si3N4, ZrO2, and HfO2 were extracted. In addition, we also explain the weaker dependence of n and p polysilicon gate work functions on the gate dielectric material. Challenges for gate work function engineering are highlighted. This work provides additional guidelines on the choice of gate materials for future MOS technology incorporating high-k gate dielectrics. © 2002 American Institute of Physics. @DOI: 10.1063/1.1521517#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bit Swapping Linear Feedback Shift Register For Low Power Application Using 130nm Complementary Metal Oxide Semiconductor Technology (TECHNICAL NOTE)

Bit swapping linear feedback shift register (BS-LFSR) is employed in a conventional linear feedback shirt register (LFSR) to reduce its power dissipation and enhance its performance. In this paper, an enhanced BS-LFSR for low power application is proposed. To achieve low power dissipation, the proposed BS-LFSR introduced the stacking technique to reduce leakage current. In addition, three diffe...

متن کامل

High-k Gate Dielectrics of Thin Films with its Technological Applications –A Review

High-k gate dielectrics are used to suppress excessive transistor gate leakage and power consumption could speed up the introduction of metal gates in complementary metal oxide semiconductor (CMOS) transistors. Many new oxides are being evaluated as gate dielectrics, such as Al2O3, Y2O3, La2O3, Gd2O3, HfO2, ZrO2, and TiO2, BaZrO3, ZrSiO4 and HfSiO4. Ru, RuO2 and SrRuO3 gate electrodes grown on ...

متن کامل

Channel thickness dependency of high-k gate dielectric based double-gate CMOS inverter

This work investigates the channel thickness dependency of high-k gate dielectric-based complementary metal-oxide-semiconductor (CMOS) inverter circuit built using a conventional double-gate metal gate oxide semiconductor field-effect transistor (DG-MOSFET). It is espied that the use of high-k dielectric as a gate oxide in n/p DG-MOSFET based CMOS inverter results in a high noise margin as well...

متن کامل

Metal gate technology for nanoscale transistors—material selection and process integration issues

Reduction of the gate length and gate dielectric thickness in complementary metal oxide semiconductor (CMOS) transistors for higher performance and circuit density aggravates problems such as poly-silicon (poly-Si) gate depletion, high gate resistance, and dopant penetration from doped poly-Si gate. To alleviate these problems in nanoscale transistors, there is immense interest in the replaceme...

متن کامل

Investigation of Electrical and Optical Characteristics of Nanohybride Composite (Polyvinyl Alcohol / Nickel Oxide)

Some issues; leakage, tunneling currents, boron diffusion are threatening SiO2 to be used as a good gate dielectric for the future of the CMOS (complementary metal- oxide- semiconductor) transistors. For finding an alternative and novel gate dielectric, the NiO (Nickel oxide) and PVA (polyvinyl alcohol) nano powders were synthesized with the sol-gel method and their nano structural p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002